OVERCOMING PCR INHIBITION USING MUTANT TAQ POLYMERASES

Dominique N. Cooper¹, Zachary Goecker², Jesse Ramirez², Ryan Yee² and Steven B. Lee²

¹Jackson State University, 1400 Lynch Street, Jackson MS, 39217, USA
²San Jose State University, One Washington Square, San Jose, CA 95192-0050, USA

Abstract: PCR-based forensic tests may have false-negative results or low sensitivity caused by powerful PCR inhibitors found in biological samples. In order for amplification of DNA to be successful, it is necessary that purification of target DNA be completed before PCR. In an attempt to overcome PCR inhibition, enhance DNA amplification, and minimize the various time and labor consuming pre-PCR procedures, the purpose of this study is to evaluate the effects of the inhibitor resistant mutant of Taq DNA polymerase, OmniTaq (DNA Polymerase Technologies St. Louis, Missouri), on amplifying DNA samples containing inhibitors. The hypothesis is that the use of inhibitor resistant Taq polymerases will result in enhanced amplification on inhibitor spiked samples. The inhibitors evaluated for this study are hematin and phenol chloroform [Hematin (1mg/ml) and Phenol:Chloroform: Isoamyl Alcohol (24:24:1 Fisher Scientific Cat. #BP153-400)]. Biological samples were obtained from volunteers, and DNA was extracted using a standard organic phase extraction method and then quantified using agarose gel electrophoresis and quantitative PCR (qPCR) using the Plexor HY kit (Promega Madison, WI). The DNA samples were quantified using a serial dilution of known DNA standards. In a separate experiment, a DNA standard was quantified in the presence of OmniTaq polymerase. Previous studies using a 2ng standard DNA sample with OmniTaq suggested that the mutant Taq appeared to inhibit PCR. The use of OmniTaq with the 2ng standard indicated that contrary to prior results, it did not inhibit PCR and appeared to enhance amplification. Standards were spiked with increasing amounts of inhibitors [Hematin (1mg/ml): 0.1ul, 0.3ul, 0.4ul, 0.6ul and Phenol Chloroform [0.1ul, 0.2ul, 0.4ul, 0.8ul] and then amplified with and without OmniTaq using 0ul, 1.0ul, 2.0ul, 3.0ul, or 4.0ul concentrations. OmniTaq (4.0ul) partially overcame inhibition on phenol chloroform (0.2ul) and hematin (0.1ul) spiked DNA, partially supporting our hypothesis. Although inhibition was alleviated, the OmniTaq concentrations utilized did not fully overcome inhibition.

Key Words: PCR, PCR inhibition, mutant Taq polymerase, phenol chloroform, hematin

Acknowledgements: This research was supported by the Minority Access to Research Careers/Undergraduate Student Training in Academic Research (MARC/U*STAR) Program (Grant No. 5T34GM007672-33) and in part by NSF-REU grant #: DBI-1262832.