BASIS APOPTOTIC MECHANISMS OF LEAD IN HUMAN LEUKEMIA (HL-60) CELLS

Alicia Meadows, Herbert Giles, Dwayne Sutton, Clement Yedjou and Paul B. Tchounwou

Cellomics and Toxicogenomics Research Laboratory, NIH-Center for Environmental Health, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18540, Jackson, Mississippi, USA

Abstract: Lead poisoning has been extensively studied over the years. Many adverse physiological and behavioral impacts on the human body have been reported due to the entry of this heavy metal. It especially causes the hematological effects to people of all ages. However, the molecular mechanisms of lead causing apoptosis are still largely unknown. Therefore, the aim of the present study was to investigate the apoptotic mechanism of lead nitrate in HL-60 cells. Human leukemia (HL-60) cells were treated with different doses of lead nitrate for 24 h. The flow cytometry and DNA fragmentation were for apoptosis assessment, respectively. The flow cytometric assessment (caspase-3 activity) showed a strong dose-response relationship between water lead nitrate exposure and early stage apoptosis of HL-60 cells. Upon 24 hrs of exposure, the results of caspase-3 activity showed that the percentages of HL-60 cells undergone late stage apoptotic were 5 ± 0%, 13 ± 0.7%, 17 ± 5.7%, 22 ± 4.6, and 18 ± 0% in 0, 10, 20, 30, and 40 μg/mL of lead nitrate, respectively. This result was further confirmed by the data of DNA laddering assay showing a clear evidence of nucleosomal DNA fragmentation in lead nitrate-treated HL-60 cells. In summary, these studies demonstrated that lead nitrate represents an apoptosis-inducing agent in HL-60 promyelocytic leukemia cells and its apoptotic mechanism functions via caspase 3 activation, following by nucleosomal DNA fragmentation.

Key words: HL-60 cells, caspase-3, DNA fragmentation, flow cytometry

Acknowledgements: This research was financially supported by a grant from National Institutes of Health (Grant No. 1G12RR13459), through the RCMI-Center for Environmental Health at Jackson State University.