OPEN SOURCE SOFTWARE TOOLS FOR ELECTRONIC HEALTH RECORD MANAGEMENT

Olusola L. Oladoyinbo¹², Ousman Mahmud², Wellington K. Ayensu² and Raphael D. Isokpehi²

¹University of Ibadan Health Service, Ibadan, Oyo State, Nigeria; ²Center for Bioinformatics & Computational Biology, Jackson State University, Jackson MS 39217; USA

Abstract: Electronic Health Record (EHR) is defined as a longitudinal collection of electronic health information about individual patients and populations. Error reduction, business concerns and structural changes in health care delivery are driving EHR implementation. Furthermore the need for an efficient and cost effective health care delivery to patients cannot be over emphasized. To manage the volume of information needed to drive this innovation, relevant software tools are needed. These software tools for uniformity and function-ability should be made open sourced. We surveyed a number of open source software tools taking into consideration cost, accessibility, and limitations. Recommendations were made on the existing software tools and how to improve their usability. The open sources software tools studied were Electronic Support for Public Health (ESP), Mediboard, and Phynx. Electronic Support for Public Health (ESP) application is robust, automated, secure, portable public health detection and messaging system for cases of notifiable diseases. Mediboard is Open Source product in the field of hospital information systems based on web technologies. Phynx supports data management, creation of electronic patient profiles with chronological order that are displayed in a common Web-browser and interactive expert evaluation of the electronic patient profiles via the Internet. We are continuing to evaluate EHR software that would be suitable for resource-limited hospital settings desiring to implement sustainable electronic health record management.

Keywords: Electronic Health Records, Diseases, Software, Translation Research

Acknowledgements: MacAurthur Foundation, Mississippi NSF-EPSCoR “Modeling and Simulation of Complex Systems” Award (EPS-0903787); Pittsburgh Supercomputing Center's National Resource for Biomedical Supercomputing (T36 GM008789) and Research Centers in Minority Institutions (RCMI) – Center for Environmental Health (NIH-NCRR G12RR13459). Disclaimer: “The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the funding agencies.