COLLABORATIVE APPROACH TO TRAINING GRADUATE STUDENTS USING FACULTY-STUDENT RESEARCH TEAMS


¹Department of Biology, Florida A&M University, Tallahassee, Florida, 32307
²Particle Engineering Research Center, University of Florida, Gainesville, FL 32608
³Department of Chemistry, Jackson State University, Jackson, Mississippi, 39217
⁴Department of Chemistry/Quantum Theory Project, University of Florida, Gainesville, Florida, 32608
⁵Department Chemistry, Florida A&M University, Tallahassee, Florida, 32307
⁶College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, 32307
⁷Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, California, 93106
⁸Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, 55455
⁹Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, 93106

Abstract: We have initiated an approach using various National Science Foundation funded programs, and a collaborative mentoring and training tactic that provides graduate students at Florida A&M with the advantage of exposure to instrumentation, and facilities found at major research institutions. This type of collaboration allows students and faculty to maintain the guidance and nurturing relationships found at their home institution. Through programs such as the Faculty-Student Summer Research Program at the University of Minnesota Materials Research Science and Engineering Center (MRSEC), the Materials Research Facility Network (MRFN), the South East Alliance for Graduate Education and the Professoriate (SEAGEP), and Jackson State University’s Computational Center for Molecular Structure and Interaction allow students the technical training necessary to be well prepared to pursue a Ph.D. and provides a collaborative avenue for Historically Black Colleges and Universities like Florida A&M University to initiate, continue, and/or combine research in areas that are important to the goals of their research community. We will show how these collaborations have fostered collaborative research platforms in the areas of cancer research/drug discovery, computational biophysics, tissue engineering, and nanotoxicity.