“TANNING BEDS AS DEADLY AS ARSENIC” – ANALYSIS OF MEDIA COVERAGE AFTER PUBLICATION OF REPORT BY INTERNATIONAL AGENCY FOR RESEARCH ON CANCER

Adrean N. Mason1,2, Hari H.P. Cohly1 and Raphael D. Isokpehi1

1Center for Bioinformatics & Computational Biology, Department of Biology, Jackson State University, Jackson MS 39217, USA
2Department of Mass Communications, Jackson State University, Jackson MS 39217, USA

Abstract: According to a recent study by the International Agency for Research on Cancer (IARC) published in July 29, 2009, tanning beds are among the highest cancer-risk category deeming them as deadly as arsenic and mustard gas. The study was based on the IARC's review of more than 20 studies on the subject and showed that the risk of melanoma (type of skin cancer) is 75 percent higher for those who begin using tanning beds before they are 30 years old. The study also says there is also sufficient evidence of an increased risk of ocular melanoma associated with the use of tanning devices. The reports generated a significant amount of media coverage. In the context of communication of scientific knowledge to the community, we analyzed the pros and cons of tanning as reported by the mass media. Preliminary assessment of 4 news reports revealed opinions on the advantages and disadvantage of tanning. The pros of tanning include protection against sun damage and premature aging by helping the skin build up its protection against sunburn. The cons of tanning include wrinkles, age spots and changes in texture and thickness by drying out skin and weakening its connective tissues. Furthermore, the use of tanning beds can cause skin diseases such as squamous cell carcinoma, melanoma and basal cell carcinoma. Skin wrinkles and sunburns are also believed to be side effects of suntan beds. We are developing a collection of videos that document opinions on the pros and cons of tanning.

Acknowledgements: Mississippi NSF-EPSCoR “Innovations through Computational Sciences” Award (EPS-0556308); Pittsburgh Supercomputing Center's National Resource for Biomedical Supercomputing (T36 GM008789); U.S. Department of Homeland Security Science & Technology Directorate (2007-ST-104-000007; 2009-ST-062-000014); Mississippi Computational Biology Seed Research Grant Program; and Research Centers in Minority Institutions (RCMI) – Center for Environmental Health (NIH-NCRR G12RR13459). Disclaimer: “The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the funding agencies.