EXTENDING THE INVESTIGATION OF GRIN2B, A PRIORITIZED GENE FOR PREDISPOSITION TO BIPOLAR DISORDER, USING NCIBI TOOLS

Wellington K. Ayensu and Raphael D. Isokpehi

Center for Bioinformatics & Computational Biology, Jackson State University, Jackson, MS 39217

Abstract: We had observed from a microarray study on the changes in gene expression in HepG2 cell line exposed to low levels of mercury that the Affymetrix probe set 213764_s_at mapped to chromosome 12p13.1-p12.3 was upregulated. The protein-encoding gene Glutamate Receptor, Ionotropic, N-methyl D-aspartate (NMDA) 2B (GRIN2B) is also located on human chromosomal region 12p and has been prioritized in population-based studies as a candidate gene for predisposition to bipolar disorder. GRIN2B encodes the NR2B subunit of the NMDA receptor. The NMDA receptor activation leads to a calcium influx into the post-synaptic cells, a signal thought to be crucial for the induction of NMDA-receptor dependent Long Term Potentiation (LTP) and Long Term Depression (LTD). Thus over-expression of these receptors can account for “excitotoxicity” of manic phases of bipolar diseases typical of Type I Bipolar Disorder. The objectives of our study were to determine Medical Subject Heading (MeSH) qualifiers as well as protein interactions associated with GRIN2B. We used the NCIBI Gene2Mesh Tool (http://gene2mesh.ncbi.org) to determine MeSH terms significantly associated in PubMed abstracts. The NCIBI NetBrowser Tool was used to visualize the interactions of proteins with GRIN2B available from the Michigan Molecular Interactions (MiMI). A total of 49 significant MeSH headings were found matching the human gene symbol "GRIN2B". The associated MeSH Qualifiers were etiology, cytology, genetics, metabolism, pharmacology and physiology to which the manuscript will be based. Furthermore, the Gene2Mesh analysis revealed Alcoholism and Ethanol as significant MeSH Headings. Forty-two protein interactions were stored in MiMI for GRIN2B and we classified them based on the type of interaction information (bidirectional, in vitro and in vivo). In summary, we have used NCIBI tools to extend our investigation on GRIN2B for understanding genetic predisposition to comorbid biopolar disorder and substance abuse.

Keywords: chromosome 12p, Upregulated, N-methyl D-aspartate (NMDA), predisposition, bipolar disorder, calcium influx, “excitotoxicity”, manic phases, Alcoholism.

Acknowledgments: The Research Centers in Minority Institutions (RCMI) – Center for Environmental Health at Jackson State University (NIH-NCCR 2G12RR013459-11); National Center for Integrative Biomedical Informatics (NIH U54DA021519); Mississippi NSF-EPSCoR (NSF-EPS-0556308); partially supported by NIH-EARDA (1G11HDo46519-03) and JSU Scholars' grant awarded to Dr. Wellington Ayensu.